

SYLLABUS

1. Information on the study programme

,	
1.1. Higher education institution	West University of Timisoara
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Computer Science
1.4. Study program field	Computer Science
1.5. Study cycle	Master
1.6. Study programme / Qualification	Artificial Intelligence and Distributed Computing

2. Information on the course

2.1. Course title			Me	Metaheuristic Algorithms					
2.2. Lecture instructo	r		Daniela Zaharie						
2.3. Seminar / laborat	ory i	nstructor	Daniela Zaharie						
2.4. Study year	2	2.5. Semester	1	2.6. Examination type	Е	2.7. Course type	DI		

3. Estimated study time (number of hours per semester)

3.1. Attendance hours per week	3	out of which: 3.2 lecture	2	3.3. seminar / laboratory	1
3.4. Attendance hours per semester	42	out of which: 3.5 lecture	28	3.6. seminar / laboratory	14
Distribution of the allocated amount of time*					
Study of literature, course handbook and personal notes					15
Supplementary documentation at library or using electronic repositories					
Preparing for laboratories, homework, reports etc.					
Exams					
Tutoring					
Other activities					
3.7. Total number of hours of 83					•

S.7. Total Hamber of Hours of	05
individual study	
3.8. Total number of hours per	125
semester	
3.9. Number of credits (ECTS)	5

4. Prerequisites (if it is the case)

4.1. curriculum	Artificial Intelligence, Numerical Calculus, Programming, Probability
	and Statistics, Operations Research and Optimization
4.2. competences	Knowledge of numerical algorithms, statistics, artificial intelligence,
	optimization and programming abilities

5. Requirements (if it is the case)

5.1. for the lecture	Lecture	room	with	whiteboard	and	projector/	Online:

					https://classroom.google.com/c/MjI2NjMyMjMwMzA2?cjc=u75tn72
5.2.	for	the	seminar	/	Lab room with computers having Python and R software installed/
labor	atory				Online: Online:
					https://classroom.google.com/c/MjI2NjMyMjMwMzA2?cjc=u75tn72

6. Specific acquired competences

Professional competences	 Ability to identify the metaheuristic technique appropriate for a specific problem Ability to implement and validate a computational model based on metaheuristic algorithms Ability to solve a real-world problem using computational intelligence tools.
Transversal competences	 Ability to conduct research activity and to prepare reports on a given topic Team work ability

7. Course objectives

7.1. General objective	Providing knowledge on Computational Intelligence methods, particularly metaheuristics designed for solving different types of optimization problems.
7.2. Specific objectives	 Knowledge objectives (OC): (1) to present basic principles of metaheuristic techniques; (2) to describe local search algorithms; (3) to describe global search algorithms; (4) to present examples of metaheuristics for global, multi-modal, multi-criteria and dynamic optimization. Abilitation objectives (OAb): (1) to identify the techniques appropriate to a given problem ; (2) to use software tools which are specific for metaheuristics; (3) to implement efficient metaheuristic algorithms; Attitude objectives (OAt): (1) to argue the utility of metaheuristic algorithma in solving real-world problems.

8. Content

8.1. Lecture	Teaching methods	Remarks, details
L1. Introduction. Classes of difficult problems	Discourse,	2 hours ([1]- ch. 0,
(planning, assignment, selection, adaptation,	conversation,	[4] – ch. 1)
prediction) and corresponding search spaces.	illustration by	
Classes of metaheuristics. The overall structure of a	examples	
metaheuristic algorithm. (OC1, OAb1)		
L2-3. Trajectory-based metaheuristics. Local search	Discourse,	4 hours ([1]-ch.2;
(Pattern Search, Nelder Mead etc). Global search	conversation,	[2]-ch.2, [4]-ch.2-3)
(restarted local search, Iterated Local Search,	illustration by	
Simulated Annealing, Tabu Search, Variable	examples	
Neighborhood Search etc).(OC2,OC3, OAb1)		
L4-6. Population-based metaheuristics. Overall	Discourse,	6 hours ([1]-ch. 3,4;
structure. Main components (exploration and	conversation,	[2] –ch. 3; [3] – ch.

exploitation operators). Encoding types. Operators	illustration by	8-12, [4]-ch.8-9)
for evolutionary algorithms: mutation, crossover,	examples	
selection. Genetic algorithms, evolution strategies,		
evolutionary programming, genetic programming.		
(OC3, OAb1)	Discourse	2 hours /[1] _ oh (
L7. Swarm Intelligence. Particle Swarm	Discourse,	2 hours ([1] – ch. 8
Optimization. Ant Colony Optimization. Artificial	conversation, illustration by	[2]-ch. 6, [3] – ch.
Bee Colony. (OC3, OAb1)	examples	16-17, [4] -ch. 5-6
L8. Difference-based and Probabilistic Algorithms.	Discourse,	2 hours ([1]-ch. 9;
Differential Evolution, Population Based	conversation,	[2]-ch. 5, [3]-ch.13
Incremental Learning, Estimation of Distribution	illustration by	
Algorithms, Bayesian Optimization Algorithms.	examples	
(OC3, OAb1)		
L9-10. Multi-objective/multi-modal/dynamic	Discourse,	4 hours ([1] – ch.
optimization. Particularities of multi-objective	conversation,	[5])
optimization (non-domination, Pareto front etc)	illustration by	
and specific methods (non-dominated sorting,	examples	
decomposition-based models). Quality metrics. Multi-modal optimization and specific approaches		
(niching, sharing etc). Techniques for dynamic		
optimization (hyper-mutation, random immigrants,		
ageing mechanisms). (OC4, OAb3)		
L11. Scalability of Metaheuristic Algorithms.	Discourse,	2 hours ([1] – ch.
Cooperative coevolution. Parallel models for	conversation,	5,6, [3] – ch. 15)
population-based metaheuristics (master-slave,	illustration by	
island, cellular). (OC3, OAb3)	examples	
L12. Analysis of the performance of metaheuristic	Discourse,	2 hours ([6])
algorithms. Design of experiments. Benchmark	conversation,	
problems. Statistical tests.	illustration by	
	examples	
L13-14. Applications of metaheuristic algorithms	Discourse,	4 hours ([2]-ch. 8;
for: neural networks design, data mining,	conversation,	[3] –ch. 2,3)
scheduling. (OC4, OAb3, Oat1)	illustration by	
	examples	

http://cs.gmu.edu/~sean/book/metaheuristics/

- 2. Jason Brownlee: *Clever Algorithms. Nature-inspired Programming Recipes*, 2011, available at <u>http://www.CleverAlgorithms.com</u>
- 3. A. Engelbrecht: Computational Intelligence. An Introduction, Wiley, 2007
- 4. B. Choppard, M. Tomassini, An Introduction to Metaheuristics for Optimization, Springer, 2018
- 5. Coello C.A., van Veldhuizen D.A., Lamont, G.B.: *Evolutionary Algorithms for Solving Multi*objective Problems, Kluwer, 2002
- 6. J.Derrac, S.García, D.Molina, F.Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence

algorithms, Swarm and Evolutionary Computation, Volume 1, Issue 1, Pages 3-18, ISSN 2210-6502, 2011.

7. Classroom materials (<u>https://classroom.google.com/c/MjI2NjMyMjMwMzA2?cjc=u75tn72</u>)

8.2. Seminar / laboratory	Teaching methods	Remarks, details
L1. Examples of optimization problems. Getting started with implementation tools (Python, R) (Oab1)	Problem-based approach, dialogue, learning through collaboration	2 hours
L2. Combinatorial optimization. Trajectory and population-based metaheuristics (Simulated Annealing, Tabu Search) (OAb1, OAb2)	Problem-based approach, dialogue, learning through collaboration	2 hours
L3. Implementation of evolutionary algorithms: genetic algorithms for combinatorial optimization and evolution strategies for continuous optimization. (OAb1, OAb2, OAb2)	Problem-based approach, dialogue, learning through collaboration	2 hours
L4. Symbolic regression using genetic programming. Combinatorial optimization using Ant Colony Optimization. Continuous optimization using Particle Swarm Optimization. (OAb1, OAb2)	Problem-based approach, dialogue, learning through collaboration	2 hours
L5. Differential evolution, distribution estimation algorithms and cooperative coevolution. (OAb1, OAb2)	Problem-based approach, dialogue, learning through collaboration	2 hours
L6. Multi-objective and multi-modal optimization. (OAb1, OAb2, OAt)	Problem-based approach, dialogue, learning through collaboration	2 hours
L7. Evolutionary design of neural networks and applications of metaheuristics in data mining (OAb1, OAb2, OAt)	Problem-based approach, dialogue, learning through collaboration	2 hours

Recommended literature:

- 1. Rick Muller, A crash course in Python for scientists, https://nbviewer.jupyter.org/gist/rpmuller/5920182
- 2. Luis Marti, Advanced Evolutionary Computation: Theory and Practice, 2014, http://lmarti.com/aec-2014
- **3.** DEAP: Distributed Evolutionary Algorithms in Python, https://pypi.org/project/deap/,
- **4.** Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: Evolutionary Algorithms Made Easy", Journal of Machine Learning

Research, vol. 13, pp. 2171-2175, jul 2012

 Classroom materials – Jupyter notebooks (<u>https://classroom.google.com/c/MjI2NjMyMjMwMzA2?cjc=u75tn72</u>)

9. Correlations between the content of the course and the requirements of the professional field and relevant employers.

The content is in accordance with the structure of similar courses offered by other universities and it covers the main aspects of using computational intelligence tools, particularly metaheuristic algorithms, in solving real world problems.

10. Evaluation

Activity	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in the final mark
10.4. Lecture	Knowledge of the main principles of the metaheuristic algorithms	Written exam (open book)	20%
	The identification of the metaheuristic algorithm for a given problem	Project presentation (report, software application, oral presentation)	60%
10.5. Seminar laboratory	 / Usage of software tools and implementation of metaheuristic algorithms 	Applications at lab and homework	20%

10.6. Minimum needed performance for passing

- Knowledge of the main concepts used in the design of metaheuristic algorithms for solving optimization problems.
- Ability to implement a simple metaheuristic algorithm.
- Ability to identify the optimization technique/ metaheuristic algorithm which is appropriate for solving a real-world problems.

The final mark is computed as weighted average of the marks corresponding to the components specified at 10.4 and10.5. The exam is considered passed if the average is at least 5 (it is not required that each mark is at least 5). In each session of exams (including re-examinations) the mark is computed using the same rule. The student can be re-examined only for the components for which the current mark is smaller than 5, excepting the cases when the student asks to be re-examined .

Online activities: all course/lab materials will be available on Google Classroom (https://classroom.google.com/c/MjI2NjMyMjMwMzA2?cjc=u75tn72) and the online activities will be organized using Google Meet.

Date of completion 13.09.2021

Signature (lecture instructor) prof.dr. Daniela Zaharie

Signature (seminar instructor) prof.dr. Daniela Zaharie

Date of approval

Signature (director of the department)