

SYLLABUS

1. Information on the study programme

1.1. Higher education institution	West University of Timisoara			
1.2. Faculty	Mathematics and Computer Science			
1.3. Department	Computer Science			
1.4. Study program field	Computer Science			
1.5. Study cycle	Master			
1.6. Study programme / Qualification	ARTIFICIAL INTELLIGENCE AND DISTRIBUTED			
	COMPUTING			

2. Information on the course

2.1. Course title			Ma	chine Learning			
2.2. Lecture instructor	r		Darian M. Onchis				
2.3. Seminar / laborat	ory i	nstructor	Darian M. Onchis				
2.4. Study year	Π	2.5. Semester	Ι	2.6. Examination type	Е	2.7. Course type	Obl.

3. Estimated study time (number of hours per semester)

3.1. Attendance hours per week	3	out of which: 3.2	2	3.3. seminar /	1
		lecture		laboratory	
3.4. Attendance hours per semester	42	out of which: 3.5	28	3.6. seminar /	14
		lecture		laboratory	
Distribution of the allocated amou	Distribution of the allocated amount of time*				
Study of literature, course handbook	and persor	nal notes			23
Supplementary documentation at library or using electronic repositories				23	
Preparing for laboratories, homework, reports etc.					50
Exams					6
Tutoring					6
Other activities					
3.7. Total number of hours of 1	08				
individual study					
3.8. Total number of hours per 1	50				
semester					
3.9. Number of credits (ECTS) 5					

4. Prerequisites (if it is the case)

4.1. curriculum	Algorithmics, Probability and Statistics, Programming
4.2. competences	Undergraduate knowledge of Algorithmics and Statistics

5. Requirements (if it is the case)

5.1. for the lecture	Lecture room. For the online activity we will use
	Google Classroom for course management, Moodle
	platform, elearning.e-uvt for exams and tests and
	Google Meet for video conferencing.

5.2. for the seminar / laboratory	Computer room

6. Specific acquired competences

Professional competences	• Machine learning algorithms design, Applications in signal	
	processing	
Transversal competences	• Project work, team work	

7. Course objectives

7.1. General objective	Introduction in Machine Learning
7.2. Specific objectives	Presentation of selected topics of Machine Learning and specific applications

8. Content

8.1. Lecture	Teaching methods	Remarks, details
Introduction to Machine Learning. Association Rules	Lecture, exemplification, demonstration	2h
Machine learning types and application domains. Supervised and unsupervised learning examples	Lecture, exemplification, demonstration	2h
Kernel based learning	Lecture, exemplification, demonstration	2h
Support Vector Machines	Lecture, exemplification, demonstration	2h
Reinforcement learning I, II	Lecture, exemplification, demonstration	4h
Neural networks and deep learning I, II, III. Convolutional neural networks. Recurrent neural networks. Autoencoders. Generative adversarial networks	Lecture, exemplification, demonstration	6h
Sparse dictionary learning. Knowledge distillation and curriculum learning.	Lecture, exemplification, demonstration	4h
Machine learning for signal and image processing I, II. Other selected applications.	Lecture, exemplification, demonstration	4h

Final recap. Projects grading.	Lecture, exemplification,	2h			
Exam preparation	demonstration				
Lium propulation					
Recommended literature					
"Machine Learning", Tom Mitchell; McGraw-Hill, 1997					
	her kernel-based methods", Nello Cris	tianini, John Shawe-			
Taylor, Cambridge University Pre					
Press, 2009	al Language Processing", Christopher	-			
	d Machine Learning", Ali N. Akan	su (Editor), Sanjeev R. Kulkarni			
•	ditor), Wiley-IEEE Press, May 2016				
http://ai.stanford.edu/~nilsson/mll		1.4 1			
▲ ·	r/Courses/cs673/machine-learning-cou	rses.ntml			
https://www.coursera.org/learn/m	0				
https://developers.google.com/ma	dition monitoring of cantilever beams'	' Donchis Computers in			
"A deep learning approach to con Industry, 2018	anton monitoring of cantilever deams	, D'Onemis, Computers m			
•	al Objects Recognition via Betti Invari	iants" Darian M Onchis Codruta			
Istin, Pedro Real: CAIP (1) 2019		lants . Darian Wi. Onems, Couruta			
8.2. Seminar / laboratory	Teaching methods	Remarks, details			
Introduction to Machine	Dialog, Problem posing,	2h			
Learning. Implementation of the	Implementation	211			
Apriori algorithm					
Kernel based learning. SVM	Dialog, Problem posing,	2h			
examples.	Implementation				
	*				
Reinforcement learning.	Dialog, Problem posing,	2h			
Implementation of Q-learning	Implementation				
and SARSA algorithms.					
Neural networks and deep	Dialog, Problem posing,	4h			
learning. Implementation and	Implementation				
testing of the selected networks.					
Sparse dictionary learning.	Dialog, Problem posing,	2h			
Applications.	Implementation				
Machine learning for signal and	Dialog, Problem posing,	2h			
image processing	Implementation				
Recommended literature					

Recommended literature

"Machine Learning", Tom Mitchell; McGraw-Hill, 1997

"Support Vector Machines and other kernel-based methods", Nello Cristianini, John Shawe-Taylor, Cambridge University Press, 2000

"Deep Learning with Python", François Chollet, November 2017, ISBN 9781617294433 Lab materials: https://darianonchis.wordpress.com/

http://scikit-learn.org/stable/ https://www.tensorflow.org/ https://colab.research.google.com

9. Correlations between the content of the course and the requirements of the professional field and relevant employers.

The course contents are not overlapping with the Data Mining course. The course is intended to follow the needs of the IT companies active in the field.

10. Evaluation

Activity	10.1. Assessment criteria	10.2. Assessment	10.3. Weight in
		methods	the final mark
10.4. Lecture	Knowledge of machine learning	Project defense:	30%
	algorithms	theoretical part and	
		related questions	
	Applications of selected algorithms	Project defense:	30%
		application part	
10.5. Seminar /	Usage of specific Machine Learning	Laboratory assignments	40%
laboratory	software		
	ed performance for passing		
Knowledge of basic	machine learning algorithms. Realization	on of a project.	
Kernel based learning	g and SVMs, specific neural networks		
Correct usage of Mac	chine Learning software packages.		

Date of completion 14.09.2021

Signature (lecture instructor)

Signature (seminar instructor)

Date of approval

Signature (director of the department)