

SYLLABUS

1. Information on the study programme

1.1. Higher education institution	West University of Timisoara
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Computer Science
1.4. Study program field	Computer Science
1.5. Study cycle	postgraduate
1.6. Study programme	Artificial Intelligence and Distributed Computing

2. Information on the course

2.1. Course title	title		Parallel computing				
2.2. Lecture instructor	•			Dana Petcu			
2.3. Seminar / laborate	ory iı	nstructor	Dana Petcu				
2.4. Study year	1	2.5. Semester	2	2.6. Examination type	Е	2.7. Course type	М

3. Estimated study time (number of hours per semester)

3.1. Attendance hours per week	3	out of which: 3.2	2	3.3. seminar /	1
		lecture		laboratory	
3.4. Attendance hours per semester	42	out of which: 3.5	28	3.6. seminar /	14
		lecture		laboratory	
Distribution of the allocated amount of time*					
Study of literature, course h	andbook an	d personal notes			48
Supplementary documentat	ion at librar	y or using electronic r	eposito	ries	8
Preparing for laboratories, homework, reports etc.					48
Exams					6
Tutoring					8
Other activities					0
3.7. Total number of hours of 1	18				<u>.</u>
individual study					
3.8. Total number of hours per 160					
semester					
3.9. Number of credits (ECTS) 6	5				

4. Prerequisites (if it is the case)

4.1. curriculum	Computer networks, Computer architecture
4.2. competences	C programmnibg

5. Requirements (if it is the case)

5.1. for the lecture	Online, Google Meet, check the digital materials at
	http://staff.fmi.uvt.ro/~dana.petcu/Calcul.htm
5.2. for the seminar / laboratory	Online, Google Meet, check the digital materials at
	http://staff.fmi.uvt.ro/~dana.petcu/Calcul.htm

6. Course objectives

Knowledge	To be familiar with the design, description and implementation of the applications that are using parallel computing		
Abilities	• Capacity to identify, design and describe a parallel computing system		
	• Capacity to implement an application that uses parallel computing		
	Capacity to use parallel computing systems		
Responsability and autonomy	 Capacity to comunicate knowledge related to parallel computing used in different activities domains 		

7. Content

Lecture	Teaching methods	Remarks, details
Lecture 1. (2h) Introduction: Parallel computers, why parallel	Lecture,	Slides:
computing, application examples, short history, to port or not to	conversation,	http://staff.fmi.uvt.ro/~
port. Performance: overhead, performance metrics for parallel	exemplify	dana.petcu/calcul/PC-
systems		1.pdf
Lecture 2. (2h) Performance Metrics for Parallel Programs:	Lecture,	Slides:
analytic modeling, execution time, overhead, speedup,	conversation,	http://staff.fmi.uvt.ro/~
efficiency, cost, granularity, scalability, roadblocks, asymptotic	exemplify	dana.petcu/calcul/PC-
analysis		2.pdf
Lecture 3. (2h) Architecture: logical organization - Flynn	Lecture,	Slides:
taxonomy, SIMD, MIMD, communication; physical organization	conversation,	http://staff.fmi.uvt.ro/~
- historical context, shared memory versus distributed memory	exemplify	dana.petcu/calcul/PC-
		3.pdf
Lecture 4. (2h) Architecture and Models: physical organization -	Lecture,	Slides:
radius-based classification, multicore, clusters, grids, trends;	conversation,	http://staff.fmi.uvt.ro/~
early models, PRAM	exemplify	dana.petcu/calcul/PC-
		4.pdf
Lecture 5. (2h) Models: dataflow and systolic architectures,	Lecture,	Slides:
circuit model, graph model, LogP and LogGP; message-passing	conversation,	http://staff.fmi.uvt.ro/~
paradigm; levels of parallelism	exemplify	dana.petcu/calcul/PC-
		5.pdf
Lecture 6. (2h) Implicit Parallelism - Instruction Level	Lecture,	Slides:
Parallelism. Pipeline, Vector and Superscalar Processors	conversation,	http://staff.fmi.uvt.ro/~
	exemplify	dana.petcu/calcul/PC-
		6.pdf
Lecture 7. (2h) Cache coherence in multiprocessor systems.	Lecture,	Slides:
Interconnection Networks - classification, topologies, evaluating	conversation,	http://staff.fmi.uvt.ro/~
static and dynamic interconnection networks	exemplify	dana.petcu/calcul/PC-
		7.pdf
Lecture 8. (2h) Communication costs, routing mechanism,	Lecture,	Slides:
mapping techniques, cost-performance tradeoffs	conversation,	http://staff.fmi.uvt.ro/~
	exemplify	dana.petcu/calcul/PC-
		8.pdf
Lecture 9. (2h) Concurrency and Steps in Parallel Algorithm	Lecture,	Slides:
Design: concurrency in parallel programs, approaches to achieve	conversation,	http://staff.fmi.uvt.ro/~
concurrency, basic leyers of software concurrency; tasks,	exemplify	dana.petcu/calcul/PC-
		9.pdf

	Problem stating,	Textbook at			
Seminar / laboratory	Teaching methods	Remarks, details			
o. Zorginew, ezeen, introduction to paranet comparing, camoriage on versity (1655, 2010					
 Wittwer Tobias. An Introduction to Parallel Programming, VSSD, Netherlands, 2006 Zbigniew, Czech, Introduction to parallel computing, Cambridge University Press, 2016 					
House of University of Timisoara, 1998.	0D N. 4. 4 1 2004				
4. Dana Petcu. Parallelism in solving ordinary differential equations, Mathematical Monographs 64, Printing					
of Timisoara, 1996.					
 Dana Petcu. Parallel Numerical Algorithms. Mathematical Monographs 60 & 61, Printing House of University 					
 Mattson Timothy G., Sanders Beverly A., Massingill Berna L. Wesley Professional, 2004 	Patterns for Parallel Prog	gramming, Addison-			
Francis Group, 2006	-				
1. Kontoghiorghes Erricos J. Handbook of Parallel Computing a	nd Statistics, Chapman &	Hall/CRC, Taylor &			
Recommended literature		1 4 .pui			
equations, computational fund dynamics	r J	14.pdf			
equations, computational fluid dynamics	exemplify	http://staff.fmi.uvt.ro/~ dana.petcu/calcul/PC-			
Lecture 14. (2h) Parallel computations in numerical analysis: linear equations, nonlinear equations, ordinary differential	Lecture, conversation,	Slides:			
Lesture 14 (2h) Densilel commutations in numeric 1 and in	Lastura	<u>91: 1</u>			
model, building-block computations; sorting networks		13.pdf			
pool, master-slave, pipeline, hybrids; applying data parallel	exempting	dana.petcu/calcul/PC-			
Parallel Algorithms: models - data parallel, task graph, work	exemplify	http://staff.fmi.uvt.ro/~			
Lecture 13. (2h) Models of Parallel Algorithms and Simple	Lecture, conversation,	Slides:			
data sharing, design evaluation	T	C1 ² 1			
decomposition, data decomposition, group tasks, order tasks,		12.pdf			
	· r J	-			
scheduling algorithms, load balancing; patterns - task	exemplify	dana.petcu/calcul/PC-			
emulations among architectures, task scheduling problem,	conversation,	http://staff.fmi.uvt.ro/~			
Lecture 12. (2h) Emulations, Scheduling and Patterns:	Lecture,	Slides:			
with interactions, replication, optimized collective interactions		11.pui			
mapping, maximizing data locality, overlapping computations		11.pdf			
classification, schemes for static mapping, schemes for dynamic	exemplify	dana.petcu/calcul/PC-			
Methods for Containing Interaction Overheads: mapping	conversation,	http://staff.fmi.uvt.ro/~			
Lecture 11. (2h) Mapping Techniques for Load Balancing and	Lecture,	Slides:			
message passing model		10.pdf			
orchestration under the data parallel, shared-address space and	exemplify	dana.petcu/calcul/PC-			
data, exploratory, speculative and hybrid decompositions,	conversation,	http://staff.fmi.uvt.ro/~			
examples and classification Lecture 10. (2h) Decomposition and Orchestration: recursive,	Lecture,	Slides:			
wamplas and alassification					

Seminar / laboratory	Teaching methods	Remarks, details
Lab 1 (2h): OpenMP – Generalities, basic mechanisms and simple examples	Problem stating, dialogue, learn through patterns and	Textbook at http://staff.fmi.uvt.ro/ ~dana.petcu/calcul.ht
Lab 2 (2h): OpenMP – Matrix operations and performance	collaboration Problem stating,	m Idem
studies	dialogue, learn through patterns and collaboration	

Lab 3 (2h): OpenMP – sorting and performance studies	Problem stating, dialogue, learn through patterns and collaboration	Idem
Lab 4 (2h) OpenACC – generalities, simple examples and matrix operations	Problem stating, dialogue, learn through patterns and collaboration	Idem
Lab 5 (2h): MPI – Generalities, basic mechanisms and simple examples	Problem stating, dialogue, learn through patterns and collaboration	Idem
Lab 6 (2h): MPI – Matrix operations and performance studies	Problem stating, dialogue, learn through patterns and collaboration	Idem
Lab 7 (2h): MPI – solving linear systems and performance studies	Problem stating, dialogue, learn through patterns and collaboration	Idem

Recommended literature

- [1] Karniadakis George E., Kirby Robert M. Parallel Scientific Computing in C++ and MPI, Cambridge University Press, 2003.
- [2] Barbara Chapman, Gabriele Jost, Ruud van van der Pas, Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation), MIT Press, 2007
- [3] John Cheng, Max Grossman, Ty MecKercher, Professional CUDA C Programming, Wiley, 2014

8. Correlations between the content of the course and the requirements of the professional field and relevant employers.

The content is consistent in structure with similar courses from other universities and covers the fundamental aspects necessary familiarity with the issue of parallel computing. Ability to identify, design, implement and analyze applications that utilize parallel calculation is essential for getting a timely response in case of scientific applications and commercial complex ones. Skills offered by this discipline are needed by an IT specialist in order to identify effective solutions for solving concrete problems, regardless of their specific activity field.

9. Evaluation

Activity	Assessment criteria	Assessment methods	Weight in the final mark
Lecture / Curs	 Knowlege about the problems associated with parallel computing and their solutions (OC) 	Written exam in the exam period	50%

Seminar/ lab	• Capacity to design and programme an application that uses parallel computing (OAb)	Oral evaluation of the software project (semester homework)	50%		
10.6. Minimum needed performance for passing					
Capacity to write a simple application that uses parallel computing					
Understand the basic principles of parallel computing					

Date of completion Instructor

10.09.2021

Date of approval

Director of the department