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Trustworthy AI in Bitdefender



Computer Vision: Exploiting Space-Time Consensus in Video

● Efficiently Exploiting Space-Time Consensus 
○ Object Segmentation & Tracking in Video
○ Spectral approach

Key aspects

● Combine the spatial and temporal dimensions
● Follow consensus between complementary parts
● Learn multiple representations
● Use as many unsupervised cues as possible
● Take advantage of existing experts

=> Building more robust representations and solutions

E. Burceanu, E. Haller, M. Leordeanu



Computer Vision: DeepFake detection and localization

Denoising diffusion probabilistic models  

� Impressive generation capabilities
� Questioning the authenticity of digital images

Detection of diffusion-generated images

� Not only a “fake” or “real” label
� But a map to indicate the manipulated area

○ Weakly-supervised

E. Oneata (Marinoiu), D. Tantaru, D. Oneata, E. Haller



NLP: Domain Adaptation for Authorship Verification

� Rethinking the Authorship Verification Experimental Setups
○ Isolate and identify biases related to the text topic and to the author's writing style
○ Explainable AI approaches guided us towards towards named entities biases
○ Models trained without them show better generalization capabilities

■ EMNLP, 2022

� VeriDark: A Large-Scale Benchmark for Authorship Verification on the Dark Web
○ Introduce a large benchmark for a new environment for Authorship Verification, DarkNet 
○ Analyze the transfer learning capabilities between Authorship datasets

■ NeurIPS, Datasets and Benchmarks Track, 2022

A. Manolache, F. Brad, E. Burceanu, A. Barbalau, M. Popescu, R. T. Ionescu



Reinforcement Learning: Spectral Normalization

� RL
○ Shifts are embedded in its core definition
○ Involves interactions with an environment
○ The environment is continuously changing
○ Acquiring the ability to generalize over shifts is the key

� Spectral Normalisation for Deep Reinforcement Learning: An Optimisation Perspective
○ Regularising the value-function estimator
○ By constraining the Lipschitz constant of a layer using spectral normalisation 

■ ICML 2021

F. Gogianu, T. Berariu, M. Rosca, C. Clopath, L. Busoniu, R. Pascanu



Trustworthy Anomaly Detection
through Better OOD Generalization
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AnoShift - A distribution shift benchmark for unsupervised 
anomaly detection

NeurIPS 2022, Datasets and Benchmarks paper

https://openreview.net/forum?id=rbrouCKPiej


What we wanted

� Continuous data stream that spreads over a large time-span (10 years)
� The shift occurs naturally and gradually
� Large enough 
� Still an open problem (not saturated)

Analyzed over 20 datasets: Kyoto-2006+

� Network traffic monitoring dataset
� Honeypots deployed in a campus
� Attacks are the anomalies

Protocol: Train on IID, test on NEAR and FAR

AnoShift



We are the first to approach Anomaly Detection in distribution shift scenarios

� Detailed shift analysis
○ visual representations (t-SNE)
○ per feature-level analysis
○ multi-variate distribution-level analysis (OTDD)

� AnoShift, a chronology-based benchmark 
○ captures the in-time performance degradation

� Acknowledging and addressing the shift 
○ to enable better anomaly detection models

Key insights



Differences in projections between years

� Samples from 2011 are in brown
� All other years in different colors

=> Clear shifts in data distribution over the years

Shift analysis: t-SNE



� Analyse how feature distributions change in time
� Jeffrey’s divergence between feature histograms
� Feature histogram similarity is usually higher nearby

Shift analysis: feature-level



� Analyse how subset distributions changes with time

� OTDD between data subsets (inliers and outliers)

� Subset distribution distance increases for inliers

Shift analysis: multi-variate distribution distances



� All AD models fail to generalize over the distribution shift

� Performance drastically drops on the FAR split

Results - ROC-AUC



Training strategies

1. iid: a new model for each interval

2. finetune: finetune over previous year

3. distil: distillation from the previous year

Addressing the distribution shift

Insights
● Distillation performs the best (+3%)
● Better modelling of inliers (higher 

PR-AUC for inliers)
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Env-Aware Anomaly Detection: Ignore Style Changes, 
Stay True to Content! 

Ștefan Smeu *1,2 Elena Burceanu*1 Andrei Nicolicioiu3 Emanuela Haller1

NeurIPS 2022, Workshop on Distribution Shifts paper 

https://openreview.net/forum?id=5c_I8bDunt


Same focus: Unsupervised Anomaly Detection in non-stationary distributions

� Benchmark for images
○ As opposed to tabular data like in AnoShift

� Split the data in environments: Env-aware learning methods in pretraining
○ Produce better embeddings for Anomaly Detection

� EA-MoCo method
○ Adjusting contrastive learning to be aware of multiple environments improves the performance 

even over supervised approaches 

Key insights



Robust to Style changes, but detect Content changes as Anomaly

Style environments: 

� cartoon, sketch, photo, 
art painting

Content classes: 

� horse and dog



Out-of-distribution regimes (test time)

� 4 different scenarios for train vs test 
distribution changes

� Differentiate between 
○ Style vs 
○ Content changes

Our scenario

● Style is OOD
○ we want to ignore this
○ to be robust to it

● Content is OOD => detect as Anomaly



Anomaly Detection Setup

Learning process

1. Learn embeddings robust to style changes
a. Supervised, using env-aware 

methods
b. Unsupervised, EA-MoCo, an 

env-aware contrastive approach 

2. Anomaly detection using those learned 
embeddings 



Positive pair is formed of:

� usual, random augmented version of anchor (     )
� closest sample from a different, random environment w.r.t. a trained autoencoder embeddings (     )

Takeaway: Style (environment)-aware pretraining when building the positive samples!

EA-MoCo - strategy for positive pair selection



Results

● Env-aware methods perform better 
● EA-MoCo scores best on most AD methods

○ And it is fully unsup!



Takeaway message

� Distribution shift of the data
○ A serious problem for ML models (and for “trusting” AI)
○ We are the first to address it in the unsupervised scenario, for Anomaly Detection

� AnoShift benchmark
○ Tabular data, network traffic
○ Large data, spans over 10 years, continuous data that gradually changes over time

� Env-Aware MoCo
○ Define anomalies from the content vs style point of view
○ Env-aware pretrainig helps
○ Propose an env-aware unsupervised pretrainig



Thank you! Questions?

eburceanu@bitdefender.com

bit-ml.github.io

http://bit-ml.github.io


BERT for anomalies

� Train in MLM mode

� Anomaly score based on masked token retrieval probabilities



Results

Monthly performance

Modeling the inliers: IID > NEAR > FAR

Poor modeling for the outliers


