Generalization properties of deep representations towards trustworthy Al

Elena Burceanu

Research Scientist, **Bitdefender**, Romania
University of Bucharest, Romania
Institute of Mathematics of the Romanian Academy, Romania

Trustworthy AI in Bitdefender

Computer Vision: Exploiting Space-Time Consensus in Video

- Efficiently Exploiting Space-Time Consensus
 - Object Segmentation & Tracking in Video
 - Spectral approach

Key aspects

- Combine the spatial and temporal dimensions
- Follow consensus between complementary parts
- Learn multiple representations
- Use as many unsupervised cues as possible
- Take advantage of existing experts

=> Building more robust representations and solutions

E. Burceanu, E. Haller, M. Leordeanu

Computer Vision: DeepFake detection and localization

Denoising diffusion probabilistic models

- ☐ Impressive generation capabilities
- Questioning the authenticity of digital images

Detection of diffusion-generated images

- □ Not only a "fake" or "real" label
- But a map to indicate the manipulated area
 - Weakly-supervised

E. Oneata (Marinoiu), D. Tantaru, D. Oneata, E. Haller

NLP: Domain Adaptation for Authorship Verification

- ☐ Rethinking the Authorship Verification Experimental Setups
 - Isolate and identify biases related to the text topic and to the author's writing style
 - Explainable AI approaches guided us towards towards named entities biases
 - Models trained without them show better generalization capabilities
 - EMNLP, 2022
- VeriDark: A Large-Scale Benchmark for Authorship Verification on the Dark Web
 - o Introduce a large benchmark for a new environment for Authorship Verification, DarkNet
 - Analyze the transfer learning capabilities between Authorship datasets
 - NeurIPS, Datasets and Benchmarks Track, 2022

Reinforcement Learning: Spectral Normalization

- \square RL
 - Shifts are embedded in its core definition.
 - o Involves interactions with an environment
 - The environment is continuously changing
 - Acquiring the ability to generalize over shifts is the key

- Spectral Normalisation for Deep Reinforcement Learning: An Optimisation Perspective
 - Regularising the value-function estimator
 - By constraining the Lipschitz constant of a layer using spectral normalisation
 - ICML 2021

F. Gogianu, T. Berariu, M. Rosca, C. Clopath, L. Busoniu, R. Pascanu

Trustworthy Anomaly Detection

through Better OOD Generalization

AnoShift - A distribution shift benchmark for unsupervised anomaly detection

Marius Drăgoi*1

Elena Burceanu*1,2

Emanuela Haller*1,3

Andrei Manolache¹

Florin Brad¹

Bitdefender, Romania¹ bit-ml.github.io

²University of Bucharest, Romania ³University Politehnica of Bucharest, Romania

NeurIPS 2022, Datasets and Benchmarks <u>paper</u>

AnoShift

What we wanted

- Continuous data stream that spreads over a large time-span (10 years)
- ☐ The shift occurs *naturally and gradually*
- ☐ *Large* enough
- ☐ Still an *open problem* (not saturated)

Analyzed over 20 datasets: *Kyoto-2006+*

- ☐ Network traffic monitoring dataset
- ☐ Honeypots deployed in a campus
- Attacks are the anomalies

Protocol: Train on IID, test on NEAR and FAR

Key insights

We are the first to approach Anomaly Detection in distribution shift scenarios

- □ Detailed shift analysis
 - visual representations (t-SNE)
 - o per feature-level analysis
 - o multi-variate distribution-level analysis (OTDD)
- ☐ AnoShift, a chronology-based benchmark
 - o captures the in-time performance degradation
- Acknowledging and addressing the shift
 - o to enable better anomaly detection models

Shift analysis: t-SNE

Differences in projections between years

- ☐ Samples from **2011** are in **brown**
- ☐ All other years in different colors

=> Clear shifts in data distribution over the years

Shift analysis: feature-level

- Analyse how feature distributions change in time
- Jeffrey's divergence between feature histograms
- Feature histogram similarity is usually higher nearby

Shift analysis: multi-variate distribution distances

- Analyse how subset distributions changes with time
- OTDD between data subsets (inliers and outliers)
- Subset distribution distance increases for inliers

Results - ROC-AUC

- All AD models fail to generalize over the distribution shift
- ☐ Performance drastically drops on the FAR split

		ROC-AUC↑					
Type	Baselines	IID	NEAR	FAR			
Classical	OC-SVM [39] (train 5%)	76.86 ± 0.06	71.43 ± 0.29	49.57 ± 0.09			
	IsoForest [27]	86.09 ± 0.54	75.26 ± 4.66	27.16 ± 1.69			
	ECOD [24]	84.76	44.87	49.19			
Ja	COPOD [23]	85.62	54.24	50.42			
0	LOF [5]	91.50 ± 0.88	$\textbf{79.29} \pm \textbf{3.33}$	34.96 ± 0.14			
	SO-GAAL [28]	50.48 ± 1.13	54.55 ± 3.92	49.35 ± 0.51			
	deepSVDD [36]	92.67 ± 0.44	87.00 ± 1.80	34.53 ± 1.62			
da	AE [1] for anomalies	81.00 ± 0.22	44.06 ± 0.57	19.96 ± 0.21			
Deep	LUNAR [14] (train 5%)	85.75 ± 1.95	49.03 ± 2.57	28.19 ± 0.90			
	InternalContrastiveLearning [41]	84.86 ± 2.14	52.26 ± 1.18	22.45 ± 0.52			
	BERT [11] for anomalies	84.54 ± 0.07	86.05 ± 0.25	28.15 ± 0.06			

Addressing the distribution shift

Training strategies

- 1. iid: a new model for each interval
- 2. finetune: finetune over previous year
- 3. distil: distillation from the previous year

Insights

- Distillation performs the best (+3%)
- Better modelling of inliers (higher PR-AUC for inliers)

Env-Aware Anomaly Detection: Ignore Style Changes, Stay True to Content!

Stefan Smeu *1,2

Elena Burceanu*1

Andrei Nicolicioiu³

Emanuela Haller¹

Bitdefender, Romania¹ bit-ml.qithub.io

²University of Bucharest, Romania ³MPI for Intelligent Systems, Tübingen

NeurIPS 2022, Workshop on Distribution Shifts paper

Key insights

Same focus: Unsupervised Anomaly Detection in non-stationary distributions

- □ Benchmark for images
 - As opposed to tabular data like in AnoShift
- Split the data in environments: Env-aware learning methods in pretraining
 - Produce better embeddings for Anomaly Detection
- ☐ FA-MoCo method
 - Adjusting contrastive learning to be aware of multiple environments improves the performance even over supervised approaches

Robust to Style changes, but detect Content changes as Anomaly

Style environments:

cartoon, sketch, photo, art painting

Content classes:

horse and dog

Out-of-distribution regimes (test time)

- 4 different scenarios for train vs test distribution changes
- Differentiate between
 - Style vs
 - Content changes

Our scenario

- Style is OOD
 - we want to ignore this
 - o to be robust to it
- Content is OOD => detect as Anomaly

	Style	Content	Description
	Hillian	Pite	Assumption: $p_e(x_S, x_C, y), p_e(x_S, x_C)$ are constant
A.	ID	ID	Goal/Task: model $p_e(y x)$ or $p_e(x,y)$ or $p_e(x)$
			algorithms following the ERM paradigm
	OOD	ID	Assumption: $p_e(x_S)$ changes over envs - closer to real-world scenarios
B.			Goal/Task: same as A., while being robust to Style changes
			IRM, V-Rex, Fish, Lisa
	ID	OOD	Assumption: $p_e(x_C)$ changes over envs
C.			Goal/Task: detect Content changes
			open set recognition; detect semantic anomalies or novelties
	OOD	OOD	Assumption: both $p_e(x_S)$, $p_e(x_C)$ change over envs - closer to real-world scenarios
D.			Goal/Task: same as C., while being robust to Style changes
			EA-MoCo (our approach)

Anomaly Detection Setup

Learning process

- 1. Learn embeddings robust to style changes
 - a. Supervised, using env-aware methods
 - b. **Unsupervised**, **EA-MoCo**, an env-aware contrastive approach
- Anomaly detection using those learned embeddings

EA-MoCo - strategy for positive pair selection

Positive pair is formed of:

- \square usual, random augmented version of anchor (\mathcal{X}_t
- \square closest sample from a different, random environment w.r.t. a trained autoencoder embeddings (\mathcal{X}_t'

Takeaway: Style (environment)-aware pretraining when building the positive samples!

Results

Mean ROC-AUC over Anomaly Detection methods (iWildCam)

Cat.	Pretrain	None	Supervised		Unsupervised		Other dataset		
	rectain	Random	ERM Fish	IRM I	Lisa	EA-MoC	MoCo v	3 MoCo v	3 ResNet
Anom. Detect. method	IsoForest	65.2	63.1 68.0	64.37	75.2	70.9	68.4	64.6	61.8
		50.1	67.7 66.1	68.77	76.5	77.0	71.9	68.7	57.8
	INNE LODA	65.1	63.8 66.7	66.27	73.9	71.1	66.9	67.1	69.9
	OCSVM	57.9	67.5 65.5	64.57	78.4	71.4	68.5	57.1	62.1
	PCA	64.1	40.4 63.3	64.45	55.6	67.7	63.9	60.9	63.2
	LOF5	43.2	61.0 59.7	61.36	55.1	60.9	68.3	58.5	53.2
	KNN	73.2	75.772.0	77.76	66.9	77.0	78.9	76.5	57.8
	KDE	62.6	65.1 59.4	67.07	77.4	77.8	76.3	57.4	63.6
	Mean AD (OOD)	60.2	63.0 65.1	66.87	71.1	71.7	70.4	63.8	61.2

- Env-aware methods perform better
- EA-MoCo scores best on most AD methods
 - And it is fully unsup!

Takeaway message

- □ Distribution shift of the data
 - A serious problem for ML models (and for "trusting" AI)
 - We are the first to address it in the unsupervised scenario, for Anomaly Detection
- AnoShift benchmark
 - Tabular data, network traffic
 - Large data, spans over 10 years, continuous data that gradually changes over time
- Env-Aware MoCo
 - Define anomalies from the content vs style point of view
 - Env-aware pretrainig helps
 - Propose an env-aware unsupervised pretrainig

Thank you! Questions?

eburceanu@bitdefender.com

bit-ml.github.io

BERT for anomalies

- ☐ Train in MLM mode
- Anomaly score based on masked token retrieval probabilities

$$anomaly_score([w_1, w_2, ..., w_t]) = \frac{\sum_{i=1..n} \sum_{j=1..t}^{mask_i \sim Masks_t^p} (1 - P(\hat{w_j}^i))}{n}$$

$$P(\hat{w_j}^i) = \begin{cases} 1, & \text{if } mask_i(\mathbf{j}) = \mathbf{0} \\ P_M(w_j|\theta_M, [\hat{w_1}^i, ..., \hat{w_t}^i]), & \text{if } mask_i(\mathbf{j}) = 1 \end{cases}$$

Results

Monthly performance

- ☐ Modeling the **inliers**: IID > NEAR > FAR
- Poor modeling for the **outliers**