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Human Confidence and Calibration
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Machines...
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Do they know what they don’t know?

Or 1n other words... are they calibrated?
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Deep Neural Networks
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®m  Deep neural networks (DNNs) have established supremacy in many pattern recognition
tasks such as object detection, speech recognition, natural language processing.

— They are increasingly used in decision-making pipelines and high-risk fields such as medical diagnosis,
autonomous vehicle control, and the legal sector.

®m  Major challenges: uncertainty and trust-worthiness of a classifier.

m The DNN must not only be accurate, but also indicate when it is likely to get the wrong
answer.

— This allows the decision-making to be routed as needed to a human or another more accurate, but possibly more
expensive, classifier, with the assumption being that the additional cost incurred is greatly surpassed by the
consequences of a wrong prediction.
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DNNs Confidence and Calibration
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® In a well-calibrated classifier, predictive scores should be indicative of the actual likelihood
of correctness.

® Modern architectures, it turns out, are prone to overconfidence.
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Accuracy vs confidence on CIFAR-100 at different training epochs for VGG-16 neural net.

Credit for the plots: Thulasidasan et al. [2019].
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DNNs Confidence and Calibration
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Introducing ChatGPT

We've trained a model called ChatGPT which interacts in a
conversational way. The dialogue format makes it possible for
ChatGPT to answer followup questions, admit its mistakes,
challenge incorrect premises, and reject inappropriate
requests.

Try ChatGPT 2 Read about ChatGPT Plus
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DNNs Confidence and Calibration
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+ New chat What is SciNLI?

(3 SciNLI Dataset Descri  Z il

SciNLI stands for "Scientific Natural Language Inference," which is a dataset designed for
evaluating the performance of natural language inference models on scientific text.
Natural language inference is the task of determining whether a given hypothesis can be
inferred from a given premise. The SciNLI| dataset consists of pairs of premises and
hypotheses, with the goal of determining whether the hypothesis is entailed by,
contradicted by, or neutral with respect to the premise.

The SciNLI dataset was created by augmenting the existing SNLI (Stanford Natural
Language Inference) dataset with scientific text from various domains, such as biology,
chemistry, and physics. The addition of scientific text makes the task more challenging
and more representative of real-world applications, where natural language inference is
often required for understanding scientific literature and communicating scientific

findings.

[1] Sadat and Caragea, 2022: SciNLI: A Corpus for Natural Language Inference on Scientific Text.
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DNNs Confidence and Calibration
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The classes in SciNLI are "contrasting”, "reasoning", "entailment" and "neutral"

| apologize for my earlier response, you are correct that the classes in SciNLI are

"contrasting", "reasoning", "entailment" and "neutral".

The "contrasting" class is used when the hypothesis is in direct contradiction to the
premise, the "reasoning" class is used when the hypothesis is related to the premise but
does not necessarily follow from it, the "entailment" class is used when the hypothesis
can logically follow from the premise, and the "neutral" class is used when there is no

clear relationship between the premise and the hypothesis.

Thank you for bringing this to my attention.

B Clear conversations
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Calibration 1n Pre-trained Language Models
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m  Current pre-trained language models are often poorly calibrated [Kong et al., 2020]
(most often being overly-confident).

™ BERT (2018)
Gap
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Over-confidence
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m Most modern DNNs, when trained for classification in a supervised learning
setting, are trained using one-hot encoded labels that have all the
probability mass in one class

— The training labels are thus zero-entropy signals that admit no uncertainty about
the input.

— The DNN is thus, in some sense, trained to become overconfident.
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Calibration Techniques
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m Temperature Scaling [Guo et al., 2017; Desai and Durrett, 2020]

— A post-processing step that re-scales the logits using a single scale
hyperparameter temperature T that is learned on a validation set.

m Label Smoothing [Miiller et al., 2019; Kumar and Sarawagi, 2019; Desai and
Durrett, 2020]

— Aregularization technique that prevents over-confident predictions toward one
single class by using soft labels.
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MixUp
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B MixUp [Zhang et al., 2018]

— A data augmentation method in which additional samples are generated during
training by combining random samples of training inputs and their associated

labels.
T = AL + (1 — A)zy, where x;, z; are raw input vectors
g = Ay + (1 — Nyj, where y;, y; are one-hot label encodings
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On the Calibration of Pre-trained Language Models using MixUp
Guided by Area Under the Margin and Saliency
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Proposed MixUp for Model Calibration
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m We propose a MixUp method that is targeted at improving model
calibration.

m We leverage a model’s training dynamics, Area Under the Margin,
[Pleiss et al., 2020] to reveal samples with distinct pronounced
characteristics

— whether they are easy-to-learn or hard-to-learn/ambiguous for the model.

m We generate MixUp samples by mixing easy-to-learn with hard-to-
learn/ambiguous samples according to their similarity/dissimilarity
provided by saliency maps [Simonyan et al., 2013].
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Mixup using Saliency Signals
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m Mixing easy-to-learn samples with the most similar hard-to-learn
samples calibrates in-domain data.

m Mixing easy-to-learn samples with the most dissimilar hard-to-learn
samples calibrate out-of-domain data.
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Datasets
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m Tasks used for evaluation :

— Natural Language Inference
[Bowman et al., 2015]
[Williams et al., 2018]

— Paraphrase Detection
[lyer et al., 2017]
[Lan et al., 2017]

— Commonsense Reasoning
[Zellers et al., 2018]
[Zeller et al., 2019]

m  We use in-domain trained models to predict out-of-distribution test samples.
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Baselines for Evaluation
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m Pre-trained Language Models (BERT, RoBERTa)

m MixUp [Zhang et al., 2018; Thulasidasan et al., 2019]
m  Manifold-MixUp (M-MixUp) [Verma et al., 2019]

m We explore the combination of miscalibration correction methods (i.e.,
temperature scaling, label smoothing) for all models.
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In-domain Data Results on BERT
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Our proposed MixUp results in best ECE values for all ID tasks

(similar results are observed on RoBERTa).
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In-domain Data Results on BERT
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Our proposed MixUp results in best ECE values for all OOD tasks
(similar results are observed on RoBERTa).
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Conclusion
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= We proposed a novel MixUp guided by the Area Under the Margins (AUM)
and Saliency Maps to mitigate the miscalibration of pre-trained language
models BERT and RoBERTa.

= We showed that our proposed MixUp achieves the lowest Expected
Calibration Errors (ECE) for both pre-trained language models on various
types of NLU tasks, for both in-domain and out-of-domain data.
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Code: https://github.com/seoyeon-p/MixUp-Guided-by-AUM-and-Saliency-Map
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