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Scientific Computing
• Computational Modeling: 

• ODE / PDEs 

• Simulations: particle simulations, 
simulated annealing 

• Cellular automata 

• Statistical models 

• Suitable algorithms & data structures 

• Software for (parallel) computers
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Paradigm Shift
• The 20th Century was limited by what 

we could measure 

• The 21st Century will be limited by what 
we can compute  

• See farther 

• Move through time 

• Verify difficult hypotheses 

• Safely conduct experiments
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Will We ever have “Enough"?
• 2-3x is the Free Lunch 

• 5-10x is worth Upgrading 

• 100x+ significantly changes Time-to-

Discovery 

• Code Redesigning 

• New HW/SW Platform 

• Never enough Computational Power
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Critical Mass
• Computational Experimentation 

• Large systems 

• Long simulations 

• Enough details 

• Computational Instrumentation 

• Good accuracy 

• Enough observations
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• HPC is a moving target 

• The rate of growth of HW has been 
exponential … so far 

• However, most workloads don’t scale! 

• TB to PB to EB… 

• Parallel tasks != parallel computing… 

• We do have a… SW scaling problem!
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Will We be able to Scale Real Apps?



• Basic Idea 
- Plot peak floating-point throughput as a function of arithmetic intensity 
- Ties together floating-point performance and memory performance for a 

target machine 
• Arithmetic Intensity 

- Floating-point operations per byte read
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The Roofline Performance Model
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Roofline Performance Examples



GPU Performance
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Amber Molecular 
Simulations 
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Cellulose



Numerical Optimisation



Optimisation Algorithms
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• Gradient Based: 
- Requires 1st / higher order derivatives 
- Guarantees finding of local minima in a small(er) number of iterations 

• First derivative methods typically require N2 iterations 
• Hessian methods typically require N (more expensive) iterations 

• Non-Gradient Based: 
- Use only function evaluations 
- May find global minimum / requires large number of iterations 
- Able to find “almost” optimum for non-smooth 1st/2nd derivable functions 
- Examples: Genetic algorithms, grid search, stochastic, etc.



Gradient or Non-Gradient Based?
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• The best approach is in two stages: 
- A low-precision solver with Non-Gradient-Based optimisation method 

in the Conceptual Design Stage 
• It gets you close to a global minima 

- A high-precision solver with a Gradient-Based optimisation method 
to refine the solution / design 
• It starts close to the global minima and converges on it 

• The hard problem:  
- Figure the “proper” combination of solver & optimisation algorithm



Is Your Function…
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• Differentiable: 
- Gradients indicate the general position of the closest local minima 
- Hessians can offer an estimation of the position of the closest local 

minima  

• Non-Differentiable:  
- No such intuition / hints if derivates are unavailable or too costly to 

compute

1st Derivative
2nd Derivative



Derivatives
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• Design optimization (single/multiple-objective) 
• Sensitivity analysis 
• Parameter estimation & fitting 
• Data assimilation problems 
• Inverse problems…

Numeric Differentiation 
Symbolic Differentiation 
Automatic Differentiation

Derivative Information Required



COSMOS: Framework for COmbining SiMulation 
and Optimization Software 
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Computational Chemistry
• Paramagnetic materials simulation 

• Shared memory superlinear speedup due to 
improved cache performance 

• GAMESS  

• Distributed Memory Parallelisation  

• MOPAC 

• Parallelization schemes for modern multi-core 
architectures 

• NAMD / GROMACS / Gaussian / CPMD / VASP 

• Scale to production systems with CPUs/GPUs
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Optimization of PIC simulations for LWFA 

• PIC Simulation 

• Energy distribution at 12ps  

• Grid independence study 

• Optimize the characteristics of the 
simulation to match the Laser 
Experiments
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Machine Learning Tech





Differentiability & end-to-end Training
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• Even in complicated scenarios differentiability ensures NN can 

be trained end-to-end with back-propagation

Deep CNN RNN 

Numerous people in  
an indoor market. 

Lots of fruits on the  
stands.



DNN Problems
• While providing good/decent performance DNNs 

- Are used and treated as “black-boxes” 
- Lack decomposability into intuitive/understandable components 
- When failing, it is almost impossible to know/find the reason 
- Can’t build trust without understanding why they predict what 

they predict 
- Can’t offer insights / tradeoffs on stronger/weaker networks 
- Train on limited data and testing / working on real-world data: 

bias / overfitting
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Going Forward



Closing the Software Gap

• HPC programming aims performance 

• In the future, code productivity is much more important  

• Correct 

• Efficient use of HPC resources  

• Maintenance over a series of architectures 

• Moore‘s law gives us freedom to choose architectures…
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HW/SW Challenges
• Power & energy per operation of 

• Computation 

• Data transport 

• Memory 

• Threading software to (at least) millions threads 

• Address memory and storage capacity & 
bandwidth limitations 

• Managing high-node count systems in the 
existence of MTBF 

• Affordability
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Conclusions
• Hardware/Software systems become the key for innovation in Science 

• Variety of HW-specific architectures 

• Exploiting the resulting freedom of choice software becomes ever more important in the 
algorithms-software-hardware codesign triad 

• Sensible use of HPSC for real applications requires:  

• Algorithmic innovations in applied sciences and numerics 

• New paradigms for software development & infrastructure support 

• Adaptation / tuning /development of appropriate optimisation strategies 
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