

How good is good enough?

What measurements and methods are useful in various. clinical imaging contexts, and how to evaluate imaging algorithm performance

De câtă precizie e nevoie?

Măsurători și metode utile în context medical, și posibilități de evaluare a algoritmilor de imagistică medicală

Abordări orientate către om pentru Inteligentă Artificială de încredere SMART DIASPORA, Timisoara 2023

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic

MI supervised ML supervised

Landmarks

Robustness

Accuracy Metrics

Boundary match Inter-operator

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation

Oxford Medimaging

Deterministic ML supervised ML supervised

Landmarks

Robustness

Accuracy Metrics Boundary match Inter-operator

Who we are and what we do

Clinical decision support through:

- semantic segmentation
- 3D reconstruction
- objective anatomical measurements

How good is good enough?

Irina Voiculescu

xford ledimagin

ledimaging

Segmentation

Deterministic

ML supervised

ML supervised

Landmarks

Robustness Accuracy

Metrics Boundary match Inter-operator

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Seamentation

Deterministic ML supervised ML supervised

Segmentation

Landmarks Accuracy

Robustness

Metrics Boundary match Inter-operator

Deterministic methods

A 2D image can be viewed like a 3D terrain map

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic

ML supervised

ML supervised

Landmarks

Robustness

Accuracy

Metrics Boundary match Inter-operator

Conclusion

An *n*D image can be viewed like an (n+1)D terrain map, n=1,2,3,...

Deterministic methods - kidney segmentation

The volumetric calculation correlates with the clinical kidney function test after partial resection

Irina Voiculescu

Oxford Medimaging

Segmentation Deterministic

ML supervised

Landmarks

Robustness Accuracy

Metrics Boundary match Inter-operator

Conclusion

SMART DIASPORA 2023 6

Machine learning for segmentation: fully supervised

Conventional annotated data: fully supervised learning

- plentiful
- reliably annotated
- publicly available
- · clinically relevant

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation Deterministic

ML supervised

ML supervised

Landmarks

Robustness

Accuracy Metrics

Boundary match Inter-operator

Machine learning for segmentation: partial labels

 Semi-supervised (cross-pseudo-supervision, multi-view learning, etc.)

As little as 2% of the data is annotated

Imprecise annotation (noise-robust learning)

(b) GT mask

(c) Emsion

(d) Dilation

(e) Elastic transform

(f) Predicted result

Weakly supervised (scribble supervision)

Image

Dense annotation

Scribble annotation

Categories

COMPUTER SCIENCE

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation Deterministic

ML supervised ML supervised

Landmarks

Robustness Accuracy

Metrics Boundary match

Inter-operator Conclusion

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic ML supervised ML supervised

Landmarks

Robustness

Accuracy Metrics Boundary match

Inter-operator

Do we always need near-prefect segmentation?

(c) After user segmentation of the cartilage and femar

(b) After partitioning, at layer 3 of 6

(d) After running the identifier, with vellow and orange regions clear on this scan

good enough? Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic ML supervised ML supervised

Robustness Accuracy

Metrics Boundary match Inter-operator

Distance, angle or alignment measurements

The clinical problem should dictate what we measure

Angles or relative positions — no need for masks

Classification (screening) task need not measure pixels

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic

ML supervised

ML supervised

andmarks.

Robustness

Accuracy Metrics Boundary match Inter-operator

Landmarks

Landmarks lead to angles and distances

Landmark detection can incorporate a measure of uncertainty

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic

ML supervised ML supervised

Landmarks
Robustness

Accuracy Metrics

Boundary match Inter-operator

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic ML supervised

ML supervised

Robustness

Landmarks

Robustness

Accuracy Metrics Boundary match

Inter-operator

Accuracy

People like to hear '99% accuracy'

No more relevant than other metrics

Easy to achieve if the feature is small relative to the overall image size

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic

ML supervised

ML supervised

Landmarks

Robustness

Accuracy Metrics

Boundary match Inter-operator

Evaluation measures (full dense masks)

Pipeline: humans draw contours, turn those into masks, generate other masks automatically, and then measure overlap or difference

Image Dice similarity coefficient (DSC) $\frac{2\times 6}{60+60}$ Ground Truth Aachine Segm. Jaccard similarity coefficient (JSC) true positive vol fract (recall, TPVF) true negative vol fract (TNVF) precision (Prec) TP FP FN TN

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation Deterministic

ML supervised

Landmarks

Robustness Accuracy

Metrics
Boundary match
Inter-operator

Distance measures

- Distance between two (point) landmarks
- Distance between landmark one-hot-points
- Distance between contours

Define dist(x, A) as **minimum** of dist(x, y) where $y \in A$

maximum symmetric surface distance (Hausdorff, HD)

average symmetric surface distance (ASSD)

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation Deterministic

ML supervised ML supervised

Landmarks

Robustness Accuracy

Metrics

Boundary match Inter-operator

Is this metric suitable?

Ask yourself: are there other more relevant metrics?

Popular evaluation measures based on region overlap or boundary distance

- mostly sensitive to one or another type of segmentation error (size, location, shape)
- as a result, produce contradicting rankings of segmentation results

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic
ML supervised
ML supervised

Landmarks

Robustness

Accuracy Metrics

Boundary match Inter-operator

Boundary overlap

Alternative: boundary match

Symmetric Boundary Dice (SBD): Dice similarity coefficient in a small neighbourhood N_x of each point x, x on first region boundary or second region boundary

Irina Voiculescu

Oxford Medimaging

Seamentation

Deterministic ML supervised

ML supervised

Robustness

Accuracy Metrics

Boundary match

Inter-operator

Boundary overlap example

Mean results from one of our segmentation algorithms

			Rec/Sen		
0.932	0.995	0.934	0.930	0.997	0.657

Machine segmentation against ground truth yellow=TP, green=FN, red=FP, black=TN

good enough?
Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic

ML supervised ML supervised

Landmarks

Robustness Accuracy

Metrics Boundary match

Inter-operator

Robustness

What other 'ingredients' could make this work robust? Inter-operator and intra-operator variability

	Dice Similarity Coefficient (DSC)		Accuracy		Sensitivity		Specificity	
Segmentation	Average	SD	Average	SD	Average	SD	Average	SD
Manual vs. semi-automated	0.8803	0.0211	0.9886	0.0315	0.9418	0.0232	0.9984	0.0015
Semi-automated vs. semi-auto	omated							
Intra-observer	0.9726	0.0093	0.9997	0.0009	0.9808	0.0183	0.9996	0.0003
Inter-observer	0.9354	0.0231	0.9991	0.0004	0.9009	0.0551	0.9998	0.0003
Manual vs. manual								
Intra-observer	0.9410	0.0142	0.9992	0.0001	0.9796	0.0115	0.9993	0.0001
Inter-observer	0.9036	0.0141	0.9987	0.0002	0.9660	0.0204	0.9990	0.0002

Is machine result within the difference between humans?

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic ML supervised ML supervised

Landmarks

Robustness Accuracy

Metrics Boundary match

Inter-operator

Conclusion

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic ML supervised ML supervised

Landmarks

Robustness

Accuracy Metrics Boundary match Inter-operator

Conclusion

Robust clinical AI applications need

- intuitive visualisation
- appropriate evaluation
- measure of (un)certainty
- explainability

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Segmentation

Deterministic

ML supervised

ML supervised

Landmarks

Robustness Accuracy

Metrics Boundary match Inter–operator

Thanks to the team

Colleagues, research assistants, graduate and undergraduate students: Stephen Cameron, Varduhi Yeghiazaryan, Stuart Golodetz, James McCouat, Abhinav Singh, Sophie Fischer, Andrew Stamper, Cara Higgins, Ziyang Wang, Avraham Sherman, Thaïs Rahoul, Jolyon Shah, Edoardo Pirovano, Chaoqing Tang, Mokrane Gaci, Marija Marčan, Clarice Poon, Ioana Ivan, Chris Nicholls, Jess Pumphrey, Samuel Littley, Tom McDonald, Élise Pegg

Clinicians: Zoe Traill, David Cranston, Andrew Protheroe, Mark Sullivan, Hemant Pandit, Tom Hamilton, David Murray, Scott Fernquest, Daniel Park, Siôn Glyn-Jones, Simon Newman, Daniel Parry

Radiographers: Anthony McIntyre and many others

How good is good enough?

Irina Voiculescu

Oxford Medimaging

Seamentation

Deterministic ML supervised ML supervised

Landmarks

Robustness

Accuracy Metrics Boundary match

Inter-operator
Conclusion