

THZ SPECTROSCOPY

https://www.jlab.org/news/releases/experiment-generates-thz-radiation-20000-times-brighter-anyone-else

Directly addresses the low frequency and high amplitude modes of biomolecules

Molecular modeling workflow

Fitzgerald AJ, Pickwell-MacPherson E, Wallace VP (2014) PLOS ONE 9(7): e99291

High sensitivity to protein structure and flexibility

Comparison of simulated spectra with the experiment

Simulate the spectrum - MD

The agreement - validation of simulation work

ENAC INTERACTION WITH AMILORIDE

- -ENaC highly selective Na+ channel expressed in water reabsorbing epithelia
- -specifically blocked by amiloride

Aim: investigate ENaC blockade by amiloride using THz spectroscopy

Experiments: measurements on Xenopus laevis cells expressing ENaC inhibited with amiloride versus cells expressing native ENaC

ENAC MODELLING AND SPECTRA SIMULATION

- -Xenopus laevis ENaC was modeled using as templates:
 - -full-length extracellular domain (ECD) of human ENaC (6WTH)
 - -the transmembrane (TM) region of cASIC1 in complex with amiloride (4NTX)
- -amiloride was docked in the TM region of ENaC
- -we simulated 20 ns of production dynamics for ENaC and ENaC + amiloride systems

- -the convergence addressed in the 12-20 ns time range, considering running windows of 1 ns, from 0.2 to 0.2 ns
- -comparison with FastDTW and CDTW methods returned confidence interval of 95%, indicating that the spectra are convergent

Simulated spectra – the last 1 ns of MD

Spectra convergence

EXPLANATION AND AMILORIDE DYNAMICS

Amiloride binding renders the channel **more rigid** in both TM and ECD, but the interaction with the ligand contributes to an increased THz absorption of the protein–ligand complex.

Amiloride dynamics

-amiloride initial binding – agreement with the template structure;

RMSF (Å)

2.80

2.10

1.40

0.70

-binding at the end of the simulation - agreement with the results of previous mutagenesis studies

CONCLUSIONS

-We successfully used THz spectroscopy and molecular modeling to:

-discriminate between cells comprising glycosylated and unglycosylated TRPM8 channels and to propose a model of TRPM8 N-glycans

-discriminate between native and blocked ENaC channel and to validate a model of ENaC-amiloride complex that is also in agreement with previous mutagenesis studies

ACKNOWLEDGEMENT

-Cell cultures

Dana Cucu Roxana Ulăreanu (Dragan)

-Modeling:

Octavian Calborean

Dan Mihailescu

Dana Cucu

Roxana Ulăreanu (Dragan)

Dan Mihailescu

REFERENCES:

- 1. Mernea M, Ulăreanu R, Călboreanu O, Chirițoiu G, Cucu D, Mihăilescu DF. N-glycosylation state of TRPM8 protein revealed by terahertz spectroscopy and molecular modelling. Biochim Biophys Acta Gen Subj. 2020;1864(7):129580.
- 2. Mernea M, Ulăreanu RŞ, Cucu D, Al-Saedi JH, Pop CE, Fendrihan S, Anghelescu GDC, Mihăilescu DF. Epithelial Sodium Channel Inhibition by Amiloride Addressed with THz Spectroscopy and Molecular Modeling. Molecules. 2022 19;27(10):3271.